- Documentation
- Reference manual
- Packages
- SWI-Prolog C-library
- Introduction
- library(process): Create processes and redirect I/O
- library(filesex): Extended operations on files
- library(uid): User and group management on Unix systems
- library(syslog): Unix syslog interface
- library(socket): Network socket (TCP and UDP) library
- The stream_pool library
- library(uri): Process URIs
- CGI Support library
- Password encryption library
- library(uuid): Universally Unique Identifier (UUID) Library
- SHA* Secure Hash Algorithms
- library(md5): MD5 hashes
- library(hash_stream): Maintain a hash on a stream
- Memory files
- Time and alarm library
- library(unix): Unix specific operations
- Limiting process resources
- library(udp_broadcast): A UDP broadcast proxy
- library(prolog_stream): A stream with Prolog callbacks
- SWI-Prolog C-library
6 library(socket): Network socket (TCP and UDP) library
The library(socket)
provides TCP and UDP inet-domain
sockets from SWI-Prolog, both client and server-side communication. The
interface of this library is very close to the Unix socket interface,
also supported by the MS-Windows winsock API. SWI-Prolog
applications that wish to communicate with multiple sources have three
options:
- Use I/O multiplexing based on wait_for_input/3. On Windows systems this can only be used for sockets, not for general (device-) file handles.
- Use multiple threads, handling either a single blocking socket or a pool using I/O multiplexing as above.
- Using XPCE's class
socket
which synchronises socket events in the GUI event-loop.
6.1 Client applications
Using this library to establish a TCP connection to a server is as simple as opening a file. See also http_open/3.
dump_swi_homepage :- setup_call_cleanup( tcp_connect(www.swi-prolog.org:http, Stream, []), ( format(Stream, 'GET / HTTP/1.1~n\c Host: www.swi-prolog.org~n\c Connection: close~n~n', []), flush_output(Stream), copy_stream_data(Stream, current_output) ), close(S)).
To deal with timeouts and multiple connections, threads, wait_for_input/3 and/or non-blocking streams (see tcp_fcntl/3) can be used.
6.2 Server applications
The typical sequence for generating a server application is given below. To close the server, use close/1 on AcceptFd.
create_server(Port) :- tcp_socket(Socket), tcp_bind(Socket, Port), tcp_listen(Socket, 5), tcp_open_socket(Socket, AcceptFd, _), <dispatch>
There are various options for <dispatch>. The most commonly used option is to start a Prolog thread to handle the connection. Alternatively, input from multiple clients can be handled in a single thread by listening to these clients using wait_for_input/3. Finally, on Unix systems, we can use fork/1 to handle the connection in a new process. Note that fork/1 and threads do not cooperate well. Combinations can be realised but require good understanding of POSIX thread and fork-semantics.
Below is the typical example using a thread. Note the use of setup_call_cleanup/3 to guarantee that all resources are reclaimed, also in case of failure or exceptions.
dispatch(AcceptFd) :- tcp_accept(AcceptFd, Socket, Peer), thread_create(process_client(Socket, Peer), _, [ detached(true) ]), dispatch(AcceptFd). process_client(Socket, Peer) :- setup_call_cleanup( tcp_open_socket(Socket, StreamPair), handle_service(StreamPair), close(StreamPair)). handle_service(StreamPair) :- ...
6.3 Socket exceptions
Errors that are trapped by the low-level library are mapped to an
exception of the shape below. In this term, Code is a lower
case atom that corresponds to the C macro name, e.g., epipe
for a broken pipe.
Message is the human readable string for the error code
returned by the OS or the same as Code if the OS does not
provide this functionality. Note that Code is derived from a
static set of macros that may or may not be defines for the target OS.
If the macro name is not known, Code is ERROR_nnn
,
where nnn is an integer.
error(socket_error(Code, Message), _)
Note that on Windows Code is a wsa*
code
which makes it hard to write portable code that handles specific socket
errors. Even on POSIX systems the exact set of errors produced by the
network stack is not defined.
6.4 TCP socket predicates
- [det]tcp_socket(-SocketId)
- Creates an INET-domain stream-socket and unifies an identifier to it with SocketId. On MS-Windows, if the socket library is not yet initialised, this will also initialise the library.
- [det]tcp_close_socket(+SocketId)
- Closes the indicated socket, making SocketId invalid.
Normally, sockets are closed by closing both stream handles returned by
open_socket/3. There are two cases where tcp_close_socket/1
is used because there are no stream-handles:
- If, after tcp_accept/3, the server uses fork/1 to handle the client in a sub-process. In this case the accepted socket is not longer needed from the main server and must be discarded using tcp_close_socket/1.
- If, after discovering the connecting client with tcp_accept/3, the server does not want to accept the connection, it should discard the accepted socket immediately using tcp_close_socket/1.
- [det]tcp_open_socket(+SocketId, -StreamPair)
- Create streams to communicate to SocketId. If SocketId is a master socket (see tcp_bind/2), StreamPair should be used for tcp_accept/3. If SocketId is a connected (see tcp_connect/2) or accepted socket (see tcp_accept/3), StreamPair is unified to a stream pair (see stream_pair/3) that can be used for reading and writing. The stream or pair must be closed with close/1, which also closes SocketId.
- [det]tcp_open_socket(+SocketId, -InStream, -OutStream)
- Similar to tcp_open_socket/2,
but creates two separate sockets where tcp_open_socket/2
would have created a stream pair.
- deprecated
- New code should use tcp_open_socket/2 because closing a stream pair is much easier to perform safely.
- [det]tcp_bind(SocketId, ?Address)
- Bind the socket to Address on the current machine. This
operation, together with tcp_listen/2
and tcp_accept/3 implement the server-side
of the socket interface. Address is either an plain Port
or a term HostPort. The first form binds the socket to the given port on
all interfaces, while the second only binds to the matching interface. A
typical example is below, causing the socket to listen only on port 8080
on the local machine's network.
tcp_bind(Socket, localhost:8080)
If Port is unbound, the system picks an arbitrary free port and unifies Port with the selected port number. Port is either an integer or the name of a registered service. See also tcp_connect/4.
- [det]tcp_listen(+SocketId, +BackLog)
- Tells, after tcp_bind/2, the socket to listen for incoming requests for connections. Backlog indicates how many pending connection requests are allowed. Pending requests are requests that are not yet acknowledged using tcp_accept/3. If the indicated number is exceeded, the requesting client will be signalled that the service is currently not available. A commonly used default value for Backlog is 5.
- [det]tcp_accept(+Socket, -Slave, -Peer)
- This predicate waits on a server socket for a connection request by a
client. On success, it creates a new socket for the client and binds the
identifier to Slave. Peer is bound to the
IP-address of the client or the atom
af_unix
if Socket is an AF_UNIX socket (see unix_domain_socket/1). - [det]tcp_connect(+SocketId, +Address)
- Connect SocketId. After successful completion, tcp_open_socket/3
can be used to create I/O-Streams to the remote socket. This predicate
is part of the low level client API. A connection to a particular host
and port is realised using these steps:
tcp_socket(Socket), tcp_connect(Socket, Host:Port), tcp_open_socket(Socket, StreamPair)
Typical client applications should use the high level interface provided by tcp_connect/3 which avoids resource leaking if a step in the process fails, and can be hooked to support proxies. For example:
setup_call_cleanup( tcp_connect(Host:Port, StreamPair, []), talk(StreamPair), close(StreamPair))
If SocketId is an AF_UNIX socket (see unix_domain_socket/1), Address is an atom or string denoting a file name.
- [det]tcp_connect(+Socket, +Address, -Read, -Write)
- Connect a (client) socket to Address and return a
bi-directional connection through the stream-handles Read and Write.
This predicate may be hooked by defining socket:tcp_connect_hook/4
with the same signature. Hooking can be used to deal with proxy
connections. E.g.,
:- multifile socket:tcp_connect_hook/4. socket:tcp_connect_hook(Socket, Address, Read, Write) :- proxy(ProxyAdress), tcp_connect(Socket, ProxyAdress), tcp_open_socket(Socket, Read, Write), proxy_connect(Address, Read, Write).
- deprecated
- New code should use tcp_connect/3
called as
tcp_connect(+Address, -StreamPair, +Options)
.
- [det]tcp_connect(+Address, -StreamPair, +Options)
- [det]tcp_connect(+Socket, +Address, -StreamPair)
- Establish a TCP communication as a client. The +,-,+ mode is the
preferred way for a client to establish a connection. This predicate can
be hooked to support network proxies. To use a proxy, the hook
proxy_for_url/3 must be
defined. Permitted options are:
- bypass_proxy(+Boolean)
- Defaults to
false
. Iftrue
, do not attempt to use any proxies to obtain the connection - nodelay(+Boolean)
- Defaults to
false
. Iftrue
, set nodelay on the resulting socket usingtcp_setopt(Socket, nodelay)
The +,+,- mode is deprecated and does not support proxies. It behaves like tcp_connect/4, but creates a stream pair (see stream_pair/3).
Address is either a Host:Port term or a file name (atom or string). The latter connects to an AF_UNIX socket and requires unix_domain_socket/1. - Errors
proxy_error(tried(ResultList))
is raised by mode (+,-,+) if proxies are defines by proxy_for_url/3 but no proxy can establsh the connection. ResultList contains one or more terms of the formfalse(Proxy)
for a hook that simply failed orerror(Proxy, ErrorTerm)
for a hook that raised an exception.- See also
library(http/http_proxy)
defines a hook that allows to connect through HTTP proxies that support theCONNECT
method.
- tcp_select(+ListOfStreams, -ReadyList, +TimeOut)
- Same as the built-in wait_for_input/3.
Used to allow for interrupts and timeouts on Windows. A redesign of the
Windows socket interface makes it impossible to do better than Windows
select()
call underlying wait_for_input/3. As input multiplexing typically happens in a background thread anyway we accept the loss of timeouts and interrupts.- deprecated
- Use wait_for_input/3
- [semidet,multifile]try_proxy(+Proxy, +TargetAddress, -Socket, -StreamPair)
- Attempt a socket-level connection via the given proxy to
TargetAddress. The Proxy argument must match the
output argument of proxy_for_url/3.
The predicate tcp_connect/3
(and http_open/3 from the
library(http/http_open)
) collect the results of failed proxies and raise an exception no proxy is capable of realizing the connection.The default implementation recognises the values for Proxy described below. The
library(http/http_proxy)
addsproxy(Host,Port)
which allows for HTTP proxies using theCONNECT
method.- direct
- Do not use any proxy
- socks(Host, Port)
- Use a SOCKS5 proxy
- [nondet,multifile]proxy_for_url(+URL, +Hostname, -Proxy)
- This hook can be implemented to return a proxy to try when connecting to URL.
Returned proxies are tried in the order in which they are returned by
the multifile hook try_proxy/4.
Pre-defined proxy methods are:
- direct
- connect directly to the resource
- proxy(Host, Port)
- Connect to the resource using an HTTP proxy. If the resource is not an HTTP URL, then try to connect using the CONNECT verb, otherwise, use the GET verb.
- socks(Host, Port)
- Connect to the resource via a SOCKS5 proxy
These correspond to the proxy methods defined by PAC Proxy auto-config. Additional methods can be returned if suitable clauses for http:http_connection_over_proxy/6 or try_proxy/4 are defined.
- [det]tcp_setopt(+SocketId, +Option)
- Set options on the socket. Defined options are:
- reuseaddr
- Allow servers to reuse a port without the system being completely sure the port is no longer in use.
- bindtodevice(+Device)
- Bind the socket to Device (an atom). For example, the code
below binds the socket to the loopback device that is typically
used to realise the localhost. See the manual pages for
setsockopt()
and the socket interface (e.g.,socket(7)
on Linux) for details.tcp_socket(Socket), tcp_setopt(Socket, bindtodevice(lo))
- nodelay
- nodelay(true)
- If
true
, disable the Nagle optimization on this socket, which is enabled by default on almost all modern TCP/IP stacks. The Nagle optimization joins small packages, which is generally desirable, but sometimes not. Please note that the underlying TCP_NODELAY setting tosetsockopt()
is not available on all platforms and systems may require additional privileges to change this option. If the option is not supported, tcp_setopt/2 raises a domain_error exception. See Wikipedia for details. - broadcast
- UDP sockets only: broadcast the package to all addresses matching the address. The address is normally the address of the local subnet (i.e. 192.168.1.255). See udp_send/4.
- ip_add_membership(+MultiCastGroup)
- ip_add_membership(+MultiCastGroup, +LocalInterface)
- ip_add_membership(+MultiCastGroup, +LocalInterface, +InterfaceIndex)
- ip_drop_membership(+MultiCastGroup)
- ip_drop_membership(+MultiCastGroup, +LocalInterface)
- ip_drop_membership(+MultiCastGroup, +LocalInterface, +InterfaceIndex)
- Join/leave a multicast group. Calls
setsockopt()
with the corresponding arguments. - dispatch(+Boolean)
- In GUI environments (using XPCE or the Windows
swipl-win.exe
executable) this flags defines whether or not any events are dispatched on behalf of the user interface. Default istrue
. Only very specific situations require setting this tofalse
. - sndbuf(+Integer)
- Sets the send buffer size to Integer (bytes). On Windows this defaults (now) to 64kb. Higher latency links may benefit from increasing this further since the maximum theoretical throughput on a link is given by buffer-size / latency. See https://support.microsoft.com/en-gb/help/823764/slow-performance-occurs-when-you-copy-data-to-a-tcp-server-by-using-a for Microsoft's discussion
- [det]tcp_fcntl(+Stream, +Action, ?Argument)
- Interface to the
fcntl()
call. Currently only suitable to deal switch stream to non-blocking mode using:tcp_fcntl(Stream, setfl, nonblock),
An attempt to read from a non-blocking stream while there is no data available returns -1 (or
end_of_file
for read/1), but at_end_of_stream/1 fails. On actual end-of-input, at_end_of_stream/1 succeeds. - [semidet]tcp_getopt(+Socket, ?Option)
- Get information about Socket. Defined properties are below.
Requesting an unknown option results in a
domain_error
exception.- file_no(-File)
- Get the OS file handle as an integer. This may be used for debugging and integration.
- [det]tcp_host_to_address(?HostName, ?Address)
- Translate between a machines host-name and it's (IP-)address. If
HostName is an atom, it is resolved using
getaddrinfo()
and the IP-number is unified to Address using a term of the formatip(Byte1,Byte2,Byte3,Byte4)
. Otherwise, if Address is bound to anip(Byte1,Byte2,Byte3,Byte4)
term, it is resolved bygethostbyaddr()
and the canonical hostname is unified with HostName.- To be done
- This function should support more functionality provided by gethostbyaddr, probably by adding an option-list.
- [det]gethostname(-Hostname)
- Return the canonical fully qualified name of this host. This is achieved
by calling
gethostname()
and return the canonical name returned bygetaddrinfo()
. - [det]negotiate_socks_connection(+DesiredEndpoint, +StreamPair)
- Negotiate a connection to DesiredEndpoint over StreamPair.
DesiredEndpoint should be in the form of either:
- hostname : port
ip(A,B,C,D)
: port
- Errors
socks_error(Details)
if the SOCKS negotiation failed.
6.5 Unix domain sockets
Unix domain sockets (sockets with address family AF_UNIX) are represented as a (socket) file in the file system. They can only be used to connect processes on the same host. The main advantage of AF_UNIX sockets is that name conflicts are much easier to manage than port conflicts and that access is determined by the file system permission rules.
- unix_domain_socket(-Socket)
- Creates an AF_UNIX-domain stream-socket and unifies an identifier to it
with Socket. This predicate does not exist if the OS does not
support the AF_UNIX address family (e.g. MS-Windows).
Unix domain socket affect tcp_connect/2 (for clients) and tcp_bind/2 and tcp_accept/3 (for servers). The address is an atom or string that is handled as a file name. On most systems the length of this file name is limited to 128 bytes (including null terminator), but according to the Linux documentation (unix(7)), portable applications must keep the address below 92 bytes. Note that these lengths are in bytes. Non-ascii characters may be represented as multiple bytes. If the length limit is exceeded a
representation_error(af_unix_name)
exception is raised.
6.6 UDP protocol support
The socket library provides support for UDP sockets. The UDP protocol is a connection-less and unreliable datagram based protocol. That means that messages sent may or may not arrive at the client side, may arrive in a different order then they were sent or even may arrive multiple times. UDP messages are often used for data replication, streaming media, or service discovery.
The library library(udp_broadcast)
provides a high-level
interface that builds on top of the library(broadcast)
facilitating an unreliable
publish-subscribe pattern based communication channel. The
library(udp_broadcast)
library supports multiple network
architectures, e.g., classical LAN broadcasting, multicast and
unicast.
- udp_socket(-Socket)
- Similar to tcp_socket/1,
but create a socket using the
SOCK_DGRAM
protocol, ready for UDP connections. - udp_receive(+Socket, -Data, -From, +Options)
- Wait for and return the next datagram. The data is returned as a Prolog
string object (see string_to_list/2). From
is a term of the format ip(A,B,C,D):Port
indicating the sender of the message. Socket can be waited
for using wait_for_input/3.
Defined Options:
- as(+Type)
- Defines the returned term-type. Type is one of
atom
,codes
orstring
(default). - max_message_size(+Size)
- Specify the maximum number of bytes to read from a UDP datagram. Size must be within the range 0-65535. If unspecified, a maximum of 4096 bytes will be read.
The typical sequence to receive UDP data is:
receive(Port) :- udp_socket(S), tcp_bind(S, Port), repeat, udp_receive(Socket, Data, From, [as(atom)]), format('Got ~q from ~q~n', [Data, From]), fail.
- udp_send(+Socket, +Data, +To, +Options)
- Send a UDP message. Data is a string, atom or code-list providing the
data. To is an address of the form Host:Port
where Host is either the hostname or a term ip/4. Options
is currently unused.
A simple example to send UDP data is:
send(Host, Port, Message) :- udp_socket(S), udp_send(S, Message, Host:Port, []), tcp_close_socket(S).
A broadcast is achieved by using
tcp_setopt(Socket, broadcast)
prior to sending the datagram and using the local network broadcast address as a ip/4 term.
The normal mechanism to discover a service on the local network is for the client to send a broadcast message to an agreed port. The server receives this message and replies to the client with a message indicating further details to establish the communication.