/* Part of SWI-Prolog Author: Benoit Desouter Jan Wielemaker (SWI-Prolog port) Fabrizio Riguzzi (mode directed tabling) Copyright (c) 2016-2020, Benoit Desouter, Jan Wielemaker, Fabrizio Riguzzi All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module('$tabling', [ (table)/1, % :PI ... untable/1, % :PI ... (tnot)/1, % :Goal not_exists/1, % :Goal undefined/0, answer_count_restraint/0, radial_restraint/0, current_table/2, % :Variant, ?Table abolish_all_tables/0, abolish_private_tables/0, abolish_shared_tables/0, abolish_table_subgoals/1, % :Subgoal abolish_module_tables/1, % +Module abolish_nonincremental_tables/0, abolish_nonincremental_tables/1, % +Options abolish_monotonic_tables/0, start_tabling/3, % +Closure, +Wrapper, :Worker start_subsumptive_tabling/3,% +Closure, +Wrapper, :Worker start_abstract_tabling/3, % +Closure, +Wrapper, :Worker start_moded_tabling/5, % +Closure, +Wrapper, :Worker, % :Variant, ?ModeArgs '$tbl_answer'/4, % +Trie, -Return, -ModeArgs, -Delay '$wrap_tabled'/2, % :Head, +Mode '$moded_wrap_tabled'/5, % :Head, +Opts, +ModeTest, +Varnt, +Moded '$wfs_call'/2, % :Goal, -Delays '$set_table_wrappers'/1, % :Head '$start_monotonic'/2 % :Head, :Wrapped ]). :- meta_predicate table(:), untable(:), tnot(0), not_exists(0), tabled_call(0), start_tabling(+, +, 0), start_abstract_tabling(+, +, 0), start_moded_tabling(+, +, 0, +, ?), current_table(:, -), abolish_table_subgoals(:), '$wfs_call'(0, :). /** Tabled execution (SLG WAM) This library handled _tabled_ execution of predicates using the characteristics if the _SLG WAM_. The required suspension is realised using _delimited continuations_ implemented by reset/3 and shift/1. The table space and work lists are part of the SWI-Prolog core. @author Benoit Desouter, Jan Wielemaker and Fabrizio Riguzzi */ % Enable debugging using debug(tabling(Topic)) when compiled with % -DO_DEBUG goal_expansion(tdebug(Topic, Fmt, Args), Expansion) :- ( current_prolog_flag(prolog_debug, true) -> Expansion = debug(tabling(Topic), Fmt, Args) ; Expansion = true ). goal_expansion(tdebug(Goal), Expansion) :- ( current_prolog_flag(prolog_debug, true) -> Expansion = ( debugging(tabling(_)) -> ( Goal -> true ; print_message(error, format('goal_failed: ~q', [Goal])) ) ; true ) ; Expansion = true ). :- if(current_prolog_flag(prolog_debug, true)). wl_goal(tnot(WorkList), ~(Goal), Skeleton) :- !, '$tbl_wkl_table'(WorkList, ATrie), trie_goal(ATrie, Goal, Skeleton). wl_goal(WorkList, Goal, Skeleton) :- '$tbl_wkl_table'(WorkList, ATrie), trie_goal(ATrie, Goal, Skeleton). trie_goal(ATrie, Goal, Skeleton) :- '$tbl_table_status'(ATrie, _Status, M:Variant, Skeleton), M:'$table_mode'(Goal0, Variant, _Moded), unqualify_goal(M:Goal0, user, Goal). delay_goals(List, Goal) :- delay_goals(List, user, Goal). user_goal(Goal, UGoal) :- unqualify_goal(Goal, user, UGoal). :- multifile prolog:portray/1. user:portray(ATrie) :- '$is_answer_trie'(ATrie, _), trie_goal(ATrie, Goal, _Skeleton), format('~q for ~p', [ATrie, Goal]). user:portray(Cont) :- compound(Cont), compound_name_arguments(Cont, '$cont$', [Clause, PC | Args]), clause_property(Clause, file(File)), file_base_name(File, Base), clause_property(Clause, line_count(Line)), clause_property(Clause, predicate(PI)), format('~q at ~w:~d @PC=~w, ~p', [PI, Base, Line, PC, Args]). :- endif. %! table(:PredicateIndicators) % % Prepare the given PredicateIndicators for tabling. This predicate is % normally used as a directive, but SWI-Prolog also allows runtime % conversion of non-tabled predicates to tabled predicates by calling % table/1. The example below prepares the predicate edge/2 and the % non-terminal statement//1 for tabled execution. % % == % :- table edge/2, statement//1. % == % % In addition to using _predicate indicators_, a predicate can be % declared for _mode directed tabling_ using a term where each % argument declares the intended mode. For example: % % == % :- table connection(_,_,min). % == % % _Mode directed tabling_ is discussed in the general introduction % section about tabling. table(M:PIList) :- setup_call_cleanup( '$set_source_module'(OldModule, M), expand_term((:- table(PIList)), Clauses), '$set_source_module'(OldModule)), dyn_tabling_list(Clauses, M). dyn_tabling_list([], _). dyn_tabling_list([H|T], M) :- dyn_tabling(H, M), dyn_tabling_list(T, M). dyn_tabling(M:Clause, _) :- !, dyn_tabling(Clause, M). dyn_tabling((:- multifile(PI)), M) :- !, multifile(M:PI), dynamic(M:PI). dyn_tabling(:- initialization(Wrap, now), M) :- !, M:Wrap. dyn_tabling('$tabled'(Head, TMode), M) :- ( clause(M:'$tabled'(Head, OMode), true, Ref), ( OMode \== TMode -> erase(Ref), fail ; true ) -> true ; assertz(M:'$tabled'(Head, TMode)) ). dyn_tabling('$table_mode'(Head, Variant, Moded), M) :- ( clause(M:'$table_mode'(Head, Variant0, Moded0), true, Ref) -> ( t(Head, Variant, Moded) =@= t(Head, Variant0, Moded0) -> true ; erase(Ref), assertz(M:'$table_mode'(Head, Variant, Moded)) ) ; assertz(M:'$table_mode'(Head, Variant, Moded)) ). dyn_tabling(('$table_update'(Head, S0, S1, S2) :- Body), M) :- ( clause(M:'$table_update'(Head, S00, S10, S20), Body0, Ref) -> ( t(Head, S0, S1, S2, Body) =@= t(Head, S00, S10, S20, Body0) -> true ; erase(Ref), assertz(M:('$table_update'(Head, S0, S1, S2) :- Body)) ) ; assertz(M:('$table_update'(Head, S0, S1, S2) :- Body)) ). %! untable(M:PIList) is det. % % Remove tabling for the predicates in PIList. This can be used to % undo the effect of table/1 at runtime. In addition to removing the % tabling instrumentation this also removes possibly associated tables % using abolish_table_subgoals/1. % % @arg PIList is a comma-list that is compatible ith table/1. untable(M:PIList) :- untable(PIList, M). untable(Var, _) :- var(Var), !, '$instantiation_error'(Var). untable(M:Spec, _) :- !, '$must_be'(atom, M), untable(Spec, M). untable((A,B), M) :- !, untable(A, M), untable(B, M). untable(Name//Arity, M) :- atom(Name), integer(Arity), Arity >= 0, !, Arity1 is Arity+2, untable(Name/Arity1, M). untable(Name/Arity, M) :- !, functor(Head, Name, Arity), ( '$get_predicate_attribute'(M:Head, tabled, 1) -> abolish_table_subgoals(M:Head), dynamic(M:'$tabled'/2), dynamic(M:'$table_mode'/3), retractall(M:'$tabled'(Head, _TMode)), retractall(M:'$table_mode'(Head, _Variant, _Moded)), unwrap_predicate(M:Name/Arity, table), '$set_predicate_attribute'(M:Head, tabled, false), '$set_predicate_attribute'(M:Head, opaque, false), '$set_predicate_attribute'(M:Head, incremental, false), '$set_predicate_attribute'(M:Head, monotonic, false), '$set_predicate_attribute'(M:Head, lazy, false) ; true ). untable(Head, M) :- callable(Head), !, functor(Head, Name, Arity), untable(Name/Arity, M). untable(TableSpec, _) :- '$type_error'(table_desclaration, TableSpec). untable_reconsult(PI) :- print_message(informational, untable(PI)), untable(PI). :- initialization prolog_listen(untable, untable_reconsult). '$wrap_tabled'(Head, Options) :- get_dict(mode, Options, subsumptive), !, set_pattributes(Head, Options), '$wrap_predicate'(Head, table, Closure, Wrapped, start_subsumptive_tabling(Closure, Head, Wrapped)). '$wrap_tabled'(Head, Options) :- get_dict(subgoal_abstract, Options, _Abstract), !, set_pattributes(Head, Options), '$wrap_predicate'(Head, table, Closure, Wrapped, start_abstract_tabling(Closure, Head, Wrapped)). '$wrap_tabled'(Head, Options) :- !, set_pattributes(Head, Options), '$wrap_predicate'(Head, table, Closure, Wrapped, start_tabling(Closure, Head, Wrapped)). %! set_pattributes(:Head, +Options) is det. % % Set all tabling attributes for Head. These have been collected using % table_options/3 from the `:- table Head as (Attr1,...)` directive. set_pattributes(Head, Options) :- '$set_predicate_attribute'(Head, tabled, true), ( tabled_attribute(Attr), get_dict(Attr, Options, Value), '$set_predicate_attribute'(Head, Attr, Value), fail ; current_prolog_flag(table_monotonic, lazy), '$set_predicate_attribute'(Head, lazy, true), fail ; true ). tabled_attribute(incremental). tabled_attribute(dynamic). tabled_attribute(tshared). tabled_attribute(max_answers). tabled_attribute(subgoal_abstract). tabled_attribute(answer_abstract). tabled_attribute(monotonic). tabled_attribute(opaque). tabled_attribute(lazy). %! start_tabling(:Closure, :Wrapper, :Implementation) % % Execute Implementation using tabling. This predicate should not be % called directly. The table/1 directive causes a predicate to be % translated into a renamed implementation and a wrapper that involves % this predicate. % % @arg Closure is the wrapper closure to find the predicate quickly. % It is also allowed to pass nothing. In that cases the predicate is % looked up using Wrapper. We suggest to pass `0` in this case. % % @compat This interface may change or disappear without notice % from future versions. start_tabling(Closure, Wrapper, Worker) :- '$tbl_variant_table'(Closure, Wrapper, Trie, Status, Skeleton, IsMono), ( IsMono == true -> shift(dependency(Skeleton, Trie, Mono)), ( Mono == true -> tdebug(monotonic, 'Monotonic new answer: ~p', [Skeleton]) ; start_tabling_2(Closure, Wrapper, Worker, Trie, Status, Skeleton) ) ; start_tabling_2(Closure, Wrapper, Worker, Trie, Status, Skeleton) ). start_tabling_2(Closure, Wrapper, Worker, Trie, Status, Skeleton) :- tdebug(deadlock, 'Got table ~p, status ~p', [Trie, Status]), ( Status == complete -> trie_gen_compiled(Trie, Skeleton) ; functor(Status, fresh, 2) -> catch(create_table(Trie, Status, Skeleton, Wrapper, Worker), deadlock, restart_tabling(Closure, Wrapper, Worker)) ; Status == invalid -> reeval(Trie, Wrapper, Skeleton) ; % = run_follower, but never fresh and Status is a worklist shift(call_info(Skeleton, Status)) ). create_table(Trie, Fresh, Skeleton, Wrapper, Worker) :- tdebug(Fresh = fresh(SCC, WorkList)), tdebug(wl_goal(WorkList, Goal, _)), tdebug(schedule, 'Created component ~d for ~p', [SCC, Goal]), setup_call_catcher_cleanup( '$idg_set_current'(OldCurrent, Trie), run_leader(Skeleton, Worker, Fresh, LStatus, Clause), Catcher, finished_leader(OldCurrent, Catcher, Fresh, Wrapper)), tdebug(schedule, 'Leader ~p done, status = ~p', [Goal, LStatus]), done_leader(LStatus, Fresh, Skeleton, Clause). %! restart_tabling(+Closure, +Wrapper, +Worker) % % We were aborted due to a deadlock. Simply retry. We sleep a very % tiny amount to give the thread against which we have deadlocked the % opportunity to grab our table. Without, it is common that we re-grab % the table within our time slice and before the kernel managed to % wakeup the other thread. restart_tabling(Closure, Wrapper, Worker) :- tdebug(user_goal(Wrapper, Goal)), tdebug(deadlock, 'Deadlock running ~p; retrying', [Goal]), sleep(0.000001), start_tabling(Closure, Wrapper, Worker). restart_abstract_tabling(Closure, Wrapper, Worker) :- tdebug(user_goal(Wrapper, Goal)), tdebug(deadlock, 'Deadlock running ~p; retrying', [Goal]), sleep(0.000001), start_abstract_tabling(Closure, Wrapper, Worker). %! start_subsumptive_tabling(:Closure, :Wrapper, :Implementation) % % (*) We should __not__ use trie_gen_compiled/2 here as this will % enumerate all answers while '$tbl_answer_update_dl'/2 uses the % available trie indexing to only fetch the relevant answer(s). % % @tbd In the end '$tbl_answer_update_dl'/2 is problematic with % incremental and shared tabling as we do not get the consistent % update view from the compiled result. start_subsumptive_tabling(Closure, Wrapper, Worker) :- ( '$tbl_existing_variant_table'(Closure, Wrapper, Trie, Status, Skeleton) -> ( Status == complete -> trie_gen_compiled(Trie, Skeleton) ; Status == invalid -> reeval(Trie, Wrapper, Skeleton), trie_gen_compiled(Trie, Skeleton) ; shift(call_info(Skeleton, Status)) ) ; more_general_table(Wrapper, ATrie), '$tbl_table_status'(ATrie, complete, Wrapper, Skeleton) -> '$tbl_answer_update_dl'(ATrie, Skeleton) % see (*) ; more_general_table(Wrapper, ATrie), '$tbl_table_status'(ATrie, Status, GenWrapper, GenSkeleton) -> ( Status == invalid -> reeval(ATrie, GenWrapper, GenSkeleton), Wrapper = GenWrapper, '$tbl_answer_update_dl'(ATrie, GenSkeleton) ; wrapper_skeleton(GenWrapper, GenSkeleton, Wrapper, Skeleton), shift(call_info(GenSkeleton, Skeleton, Status)), unify_subsumptive(Skeleton, GenSkeleton) ) ; start_tabling(Closure, Wrapper, Worker) ). %! wrapper_skeleton(+GenWrapper, +GenSkeleton, +Wrapper, -Skeleton) % % Skeleton is a specialized version of GenSkeleton for the subsumed % new consumer. wrapper_skeleton(GenWrapper, GenSkeleton, Wrapper, Skeleton) :- copy_term(GenWrapper+GenSkeleton, Wrapper+Skeleton), tdebug(call_subsumption, 'GenSkeleton+Skeleton = ~p', [GenSkeleton+Skeleton]). unify_subsumptive(X,X). %! start_abstract_tabling(:Closure, :Wrapper, :Worker) % % Deal with ``table p/1 as subgoal_abstract(N)``. This is a merge % between variant and subsumptive tabling. If the goal is not % abstracted this is simple variant tabling. If the goal is abstracted % we must solve the more general goal and use answers from the % abstract table. % % Wrapper is e.g., user:p(s(s(s(X))),Y) % Worker is e.g., call((p/2)(s(s(s(X))),Y)) start_abstract_tabling(Closure, Wrapper, Worker) :- '$tbl_abstract_table'(Closure, Wrapper, Trie, _Abstract, Status, Skeleton), tdebug(abstract, 'Wrapper=~p, Worker=~p, Skel=~p', [Wrapper, Worker, Skeleton]), ( is_most_general_term(Skeleton) % TBD: Fill and test Abstract -> start_tabling_2(Closure, Wrapper, Worker, Trie, Status, Skeleton) ; Status == complete -> '$tbl_answer_update_dl'(Trie, Skeleton) ; functor(Status, fresh, 2) -> '$tbl_table_status'(Trie, _, GenWrapper, GenSkeleton), abstract_worker(Worker, GenWrapper, GenWorker), catch(create_abstract_table(Trie, Status, Skeleton, GenSkeleton, GenWrapper, GenWorker), deadlock, restart_abstract_tabling(Closure, Wrapper, Worker)) ; Status == invalid -> '$tbl_table_status'(Trie, _, GenWrapper, GenSkeleton), reeval(ATrie, GenWrapper, GenSkeleton), Wrapper = GenWrapper, '$tbl_answer_update_dl'(ATrie, Skeleton) ; shift(call_info(GenSkeleton, Skeleton, Status)), unify_subsumptive(Skeleton, GenSkeleton) ). create_abstract_table(Trie, Fresh, Skeleton, GenSkeleton, Wrapper, Worker) :- tdebug(Fresh = fresh(SCC, WorkList)), tdebug(wl_goal(WorkList, Goal, _)), tdebug(schedule, 'Created component ~d for ~p', [SCC, Goal]), setup_call_catcher_cleanup( '$idg_set_current'(OldCurrent, Trie), run_leader(GenSkeleton, Worker, Fresh, LStatus, _Clause), Catcher, finished_leader(OldCurrent, Catcher, Fresh, Wrapper)), tdebug(schedule, 'Leader ~p done, status = ~p', [Goal, LStatus]), Skeleton = GenSkeleton, done_abstract_leader(LStatus, Fresh, GenSkeleton, Trie). abstract_worker(_:call(Term), _M:GenWrapper, call(GenTerm)) :- functor(Term, Closure, _), GenWrapper =.. [_|Args], GenTerm =.. [Closure|Args]. :- '$hide'((done_abstract_leader/4)). done_abstract_leader(complete, _Fresh, Skeleton, Trie) :- !, '$tbl_answer_update_dl'(Trie, Skeleton). done_abstract_leader(final, fresh(SCC, _Worklist), Skeleton, Trie) :- !, '$tbl_free_component'(SCC), '$tbl_answer_update_dl'(Trie, Skeleton). done_abstract_leader(_,_,_,_). %! done_leader(+Status, +Fresh, +Skeleton, -Clause) % % Called on completion of a table. Possibly destroys the component and % generates the answers from the complete table. The last cases deals % with leaders that are merged into a higher SCC (and thus no longer a % leader). :- '$hide'((done_leader/4, finished_leader/4)). done_leader(complete, _Fresh, Skeleton, Clause) :- !, trie_gen_compiled(Clause, Skeleton). done_leader(final, fresh(SCC, _Worklist), Skeleton, Clause) :- !, '$tbl_free_component'(SCC), trie_gen_compiled(Clause, Skeleton). done_leader(_,_,_,_). finished_leader(OldCurrent, Catcher, Fresh, Wrapper) :- '$idg_set_current'(OldCurrent), ( Catcher == exit -> true ; Catcher == fail -> true ; Catcher = exception(_) -> Fresh = fresh(SCC, _), '$tbl_table_discard_all'(SCC) ; print_message(error, tabling(unexpected_result(Wrapper, Catcher))) ). %! run_leader(+Skeleton, +Worker, +Fresh, -Status, -Clause) is det. % % Run the leader of a (new) SCC, storing instantiated copies of % Wrapper into Trie. Status is the status of the SCC when this % predicate terminates. It is one of `complete`, in which case local % completion finished or `merged` if running the completion finds an % open (not completed) active goal that resides in a parent component. % In this case, this SCC has been merged with this parent. % % If the SCC is merged, the answers it already gathered are added to % the worklist and we shift (suspend), turning our leader into an % internal node for the upper SCC. run_leader(Skeleton, Worker, fresh(SCC, Worklist), Status, Clause) :- tdebug(wl_goal(Worklist, Goal, Skeleton)), tdebug(schedule, '-> Activate component ~p for ~p', [SCC, Goal]), activate(Skeleton, Worker, Worklist), tdebug(schedule, '-> Complete component ~p for ~p', [SCC, Goal]), completion(SCC, Status, Clause), tdebug(schedule, '-> Completed component ~p for ~p: ~p', [SCC, Goal, Status]), ( Status == merged -> tdebug(merge, 'Turning leader ~p into follower', [Goal]), '$tbl_wkl_make_follower'(Worklist), shift(call_info(Skeleton, Worklist)) ; true % completed ). activate(Skeleton, Worker, WorkList) :- tdebug(activate, '~p: created wl=~p', [Skeleton, WorkList]), ( reset_delays, delim(Skeleton, Worker, WorkList, []), fail ; true ). %! delim(+Skeleton, +Worker, +WorkList, +Delays) % % Call WorkList and add all instances of Skeleton as answer to % WorkList, conditional according to Delays. % % @arg Skeleton is the return skeleton (ret/N term) % @arg Worker is either the (wrapped) tabled goal or a _continuation_ % @arg WorkList is the work list associated with Worker (or its % continuation). % @arg Delays is the current delay list. Note that the actual delay % also include the internal global delay list. % '$tbl_wkl_add_answer'/4 joins the two. For a dependency we % join the two explicitly. delim(Skeleton, Worker, WorkList, Delays) :- reset(Worker, SourceCall, Continuation), tdebug(wl_goal(WorkList, Goal, _)), ( Continuation == 0 -> tdebug('$tbl_add_global_delays'(Delays, AllDelays)), tdebug(delay_goals(AllDelays, Cond)), tdebug(answer, 'New answer ~p for ~p (delays = ~p)', [Skeleton, Goal, Cond]), '$tbl_wkl_add_answer'(WorkList, Skeleton, Delays, Complete), Complete == !, ! ; SourceCall = call_info(SrcSkeleton, SourceWL) -> '$tbl_add_global_delays'(Delays, AllDelays), tdebug(wl_goal(SourceWL, SrcGoal, _)), tdebug(wl_goal(WorkList, DstGoal, _)), tdebug(schedule, 'Suspended ~p, for solving ~p', [SrcGoal, DstGoal]), '$tbl_wkl_add_suspension'( SourceWL, dependency(SrcSkeleton, Continuation, Skeleton, WorkList, AllDelays)) ; SourceCall = call_info(SrcSkeleton, InstSkeleton, SourceWL) -> '$tbl_add_global_delays'(Delays, AllDelays), tdebug(wl_goal(SourceWL, SrcGoal, _)), tdebug(wl_goal(WorkList, DstGoal, _)), tdebug(schedule, 'Suspended ~p, for solving ~p', [SrcGoal, DstGoal]), '$tbl_wkl_add_suspension'( SourceWL, InstSkeleton, dependency(SrcSkeleton, Continuation, Skeleton, WorkList, AllDelays)) ; '$tbl_wkl_table'(WorkList, ATrie), mon_assert_dep(SourceCall, Continuation, Skeleton, ATrie) -> delim(Skeleton, Continuation, WorkList, Delays) ). %! start_moded_tabling(+Closure, :Wrapper, :Implementation, +Variant, +ModeArgs) % % As start_tabling/2, but in addition separates the data stored in the % answer trie in the Variant and ModeArgs. '$moded_wrap_tabled'(Head, Options, ModeTest, WrapperNoModes, ModeArgs) :- set_pattributes(Head, Options), '$wrap_predicate'(Head, table, Closure, Wrapped, ( ModeTest, start_moded_tabling(Closure, Head, Wrapped, WrapperNoModes, ModeArgs) )). start_moded_tabling(Closure, Wrapper, Worker, WrapperNoModes, ModeArgs) :- '$tbl_moded_variant_table'(Closure, WrapperNoModes, Trie, Status, Skeleton, IsMono), ( IsMono == true -> shift(dependency(Skeleton/ModeArgs, Trie, Mono)), ( Mono == true -> tdebug(monotonic, 'Monotonic new answer: ~p', [Skeleton]) ; start_moded_tabling_2(Closure, Wrapper, Worker, ModeArgs, Trie, Status, Skeleton) ) ; start_moded_tabling_2(Closure, Wrapper, Worker, ModeArgs, Trie, Status, Skeleton) ). start_moded_tabling_2(_Closure, Wrapper, Worker, ModeArgs, Trie, Status, Skeleton) :- ( Status == complete -> moded_gen_answer(Trie, Skeleton, ModeArgs) ; functor(Status, fresh, 2) -> setup_call_catcher_cleanup( '$idg_set_current'(OldCurrent, Trie), moded_run_leader(Wrapper, Skeleton/ModeArgs, Worker, Status, LStatus), Catcher, finished_leader(OldCurrent, Catcher, Status, Wrapper)), tdebug(schedule, 'Leader ~p done, modeargs = ~p, status = ~p', [Wrapper, ModeArgs, LStatus]), moded_done_leader(LStatus, Status, Skeleton, ModeArgs, Trie) ; Status == invalid -> reeval(Trie, Wrapper, Skeleton), moded_gen_answer(Trie, Skeleton, ModeArgs) ; % = run_follower, but never fresh and Status is a worklist shift(call_info(Skeleton/ModeArgs, Status)) ). :- public moded_gen_answer/3. % XSB tables.pl moded_gen_answer(Trie, Skeleton, ModedArgs) :- trie_gen(Trie, Skeleton), '$tbl_answer_update_dl'(Trie, Skeleton, ModedArgs). '$tbl_answer'(ATrie, Skeleton, ModedArgs, Delay) :- trie_gen(ATrie, Skeleton), '$tbl_answer_c'(ATrie, Skeleton, ModedArgs, Delay). moded_done_leader(complete, _Fresh, Skeleton, ModeArgs, Trie) :- !, moded_gen_answer(Trie, Skeleton, ModeArgs). moded_done_leader(final, fresh(SCC, _WorkList), Skeleton, ModeArgs, Trie) :- !, '$tbl_free_component'(SCC), moded_gen_answer(Trie, Skeleton, ModeArgs). moded_done_leader(_, _, _, _, _). moded_run_leader(Wrapper, SkeletonMA, Worker, fresh(SCC, Worklist), Status) :- tdebug(wl_goal(Worklist, Goal, _)), tdebug(schedule, '-> Activate component ~p for ~p', [SCC, Goal]), moded_activate(SkeletonMA, Worker, Worklist), tdebug(schedule, '-> Complete component ~p for ~p', [SCC, Goal]), completion(SCC, Status, _Clause), % TBD: propagate tdebug(schedule, '-> Completed component ~p for ~p: ~p', [SCC, Goal, Status]), ( Status == merged -> tdebug(merge, 'Turning leader ~p into follower', [Wrapper]), '$tbl_wkl_make_follower'(Worklist), shift(call_info(SkeletonMA, Worklist)) ; true % completed ). moded_activate(SkeletonMA, Worker, WorkList) :- ( reset_delays, delim(SkeletonMA, Worker, WorkList, []), fail ; true ). %! update(+Flags, +Head, +Module, +A1, +A2, -A3, -Action) is semidet. % % Update the aggregated value for an answer. Iff this predicate % succeeds, the aggregated value is updated to A3. If Del is unified % with `true`, A1 should be deleted. % % @arg Flags is a bit mask telling which of A1 and A2 are uncondional % @arg Head is the head of the predicate % @arg Module is the module of the predicate % @arg A1 is the currently aggregated value % @arg A2 is the newly produced value % @arg Action is one of % - `delete` to replace the old answer with the new % - `keep` to keep the old answer and add the new % - `done` to stop the update process :- public update/7. update(0b11, Wrapper, M, A1, A2, A3, delete) :- !, M:'$table_update'(Wrapper, A1, A2, A3), A1 \=@= A3. update(0b10, Wrapper, M, A1, A2, A3, Action) :- !, ( is_subsumed_by(Wrapper, M, A2, A1) -> Action = done ; A3 = A2, Action = keep ). update(0b01, Wrapper, M, A1, A2, A2, Action) :- !, ( is_subsumed_by(Wrapper, M, A1, A2) -> Action = delete ; Action = keep ). update(0b00, _Wrapper, _M, _A1, A2, A2, keep) :- !. is_subsumed_by(Wrapper, M, Instance, General) :- M:'$table_update'(Wrapper, Instance, General, New), New =@= General. %! completion(+Component, -Status, -Clause) is det. % % Wakeup suspended goals until no new answers are generated. Status is % one of `merged`, `completed` or `final`. If Status is not `merged`, % Clause is a compiled representation for the answer trie of the % Component leader. completion(SCC, Status, Clause) :- ( reset_delays, completion_(SCC), fail ; '$tbl_table_complete_all'(SCC, Status, Clause), tdebug(schedule, 'SCC ~p: ~p', [scc(SCC), Status]) ). completion_(SCC) :- repeat, ( '$tbl_pop_worklist'(SCC, WorkList) -> tdebug(wl_goal(WorkList, Goal, _)), tdebug(schedule, 'Complete ~p in ~p', [Goal, scc(SCC)]), completion_step(WorkList) ; ! ). %! '$tbl_wkl_work'(+WorkList, %! -Answer, %! -Continuation, -Wrapper, -TargetWorklist, %! -Delays) is nondet. % % True when Continuation needs to run with Answer and possible answers % need to be added to TargetWorklist. The remaining arguments are % there to restore variable bindings and restore the delay list. % % The suspension added by '$tbl_wkl_add_suspension'/2 is a term % dependency(SrcWrapper, Continuation, Wrapper, WorkList, Delays). % Note that: % % - Answer and Goal must be unified to rebind the _input_ arguments % for the continuation. % - Wrapper is stored in TargetWorklist on successful completion % of the Continuation. % - If Answer Subsumption is in effect, the story is a bit more % complex and ModeArgs provide the binding over which we do % _aggregation_. Otherwise, ModeArgs is the the % reserved trie node produced by '$tbl_trienode'/1. % % @arg Answer is the answer term from the answer cluster (node in % the answer trie). For answer subsumption it is a term Ret/ModeArgs % @arg Goal to Delays are extracted from the dependency/5 term in % the same order. %! completion_step(+Worklist) is fail. completion_step(SourceWL) :- '$tbl_wkl_work'(SourceWL, Answer, Continuation, TargetSkeleton, TargetWL, Delays), tdebug(wl_goal(SourceWL, SourceGoal, _)), tdebug(wl_goal(TargetWL, TargetGoal, _Skeleton)), tdebug('$tbl_add_global_delays'(Delays, AllDelays)), tdebug(delay_goals(AllDelays, Cond)), tdebug(schedule, 'Resuming ~p, calling ~p with ~p (delays = ~p)', [TargetGoal, SourceGoal, Answer, Cond]), delim(TargetSkeleton, Continuation, TargetWL, Delays), fail. /******************************* * STRATIFIED NEGATION * *******************************/ %! tnot(:Goal) % % Tabled negation. % % (*): Only variant tabling is allowed under tnot/1. tnot(Goal0) :- '$tnot_implementation'(Goal0, Goal), % verifies Goal is tabled ( '$tbl_existing_variant_table'(_, Goal, Trie, Status, Skeleton) -> ( '$tbl_answer_dl'(Trie, _, true) -> fail ; '$tbl_answer_dl'(Trie, _, _) -> tdebug(tnot, 'tnot: adding ~p to delay list', [Goal]), add_delay(Trie) ; Status == complete -> true ; negation_suspend(Goal, Skeleton, Status) ) ; tdebug(tnot, 'tnot: ~p: fresh', [Goal]), ( '$wrapped_implementation'(Goal, table, Implementation), % see (*) functor(Implementation, Closure, _), start_tabling(Closure, Goal, Implementation), fail ; '$tbl_existing_variant_table'(_, Goal, Trie, NewStatus, NewSkeleton), tdebug(tnot, 'tnot: fresh ~p now ~p', [Goal, NewStatus]), ( '$tbl_answer_dl'(Trie, _, true) -> fail ; '$tbl_answer_dl'(Trie, _, _) -> add_delay(Trie) ; NewStatus == complete -> true ; negation_suspend(Goal, NewSkeleton, NewStatus) ) ) ). floundering(Goal) :- format(string(Comment), 'Floundering goal in tnot/1: ~p', [Goal]), throw(error(instantiation_error, context(_Stack, Comment))). %! negation_suspend(+Goal, +Skeleton, +Worklist) % % Suspend Worklist due to negation. This marks the worklist as dealing % with a negative literal and suspend. % % The completion step will resume negative worklists that have no % solutions, causing this to succeed. negation_suspend(Wrapper, Skeleton, Worklist) :- tdebug(tnot, 'negation_suspend ~p (wl=~p)', [Wrapper, Worklist]), '$tbl_wkl_negative'(Worklist), shift(call_info(Skeleton, tnot(Worklist))), tdebug(tnot, 'negation resume ~p (wl=~p)', [Wrapper, Worklist]), '$tbl_wkl_is_false'(Worklist). %! not_exists(:P) is semidet. % % Tabled negation for non-ground goals. This predicate uses the tabled % meta-predicate tabled_call/1. The tables for xsb:tabled_call/1 must % be cleared if `the world changes' as well as to avoid aggregating % too many variants. not_exists(Goal) :- ground(Goal), '$get_predicate_attribute'(Goal, tabled, 1), !, tnot(Goal). not_exists(Goal) :- ( tabled_call(Goal), fail ; tnot(tabled_call(Goal)) ). /******************************* * DELAY LISTS * *******************************/ add_delay(Delay) :- '$tbl_delay_list'(DL0), '$tbl_set_delay_list'([Delay|DL0]). reset_delays :- '$tbl_set_delay_list'([]). %! '$wfs_call'(:Goal, :Delays) % % Call Goal and provide WFS delayed goals as a conjunction in Delays. % This predicate is the internal version of call_delays/2 from % library(wfs). '$wfs_call'(Goal, M:Delays) :- '$tbl_delay_list'(DL0), reset_delays, call(Goal), '$tbl_delay_list'(DL1), ( delay_goals(DL1, M, Delays) -> true ; Delays = undefined ), '$append'(DL0, DL1, DL), '$tbl_set_delay_list'(DL). delay_goals([], _, true) :- !. delay_goals([AT+AN|T], M, Goal) :- !, ( integer(AN) -> at_delay_goal(AT, M, G0, Answer, Moded), ( '$tbl_is_trienode'(Moded) -> trie_term(AN, Answer) ; true % TBD: Generated moded answer ) ; AN = Skeleton/ModeArgs -> '$tbl_table_status'(AT, _, M1:GNoModes, Skeleton), M1:'$table_mode'(G0plain, GNoModes, ModeArgs), G0 = M1:G0plain ; '$tbl_table_status'(AT, _, G0, AN) ), GN = G0, ( T == [] -> Goal = GN ; Goal = (GN,GT), delay_goals(T, M, GT) ). delay_goals([AT|T], M, Goal) :- atrie_goal(AT, G0), unqualify_goal(G0, M, G1), GN = tnot(G1), ( T == [] -> Goal = GN ; Goal = (GN,GT), delay_goals(T, M, GT) ). at_delay_goal(tnot(Trie), M, tnot(Goal), Skeleton, Moded) :- is_trie(Trie), !, at_delay_goal(Trie, M, Goal, Skeleton, Moded). at_delay_goal(Trie, M, Goal, Skeleton, Moded) :- is_trie(Trie), !, '$tbl_table_status'(Trie, _Status, M2:Variant, Skeleton), M2:'$table_mode'(Goal0, Variant, Moded), unqualify_goal(M2:Goal0, M, Goal). atrie_goal(Trie, M:Goal) :- '$tbl_table_status'(Trie, _Status, M:Variant, _Skeleton), M:'$table_mode'(Goal, Variant, _Moded). unqualify_goal(M:Goal, M, Goal0) :- !, Goal0 = Goal. unqualify_goal(Goal, _, Goal). /******************************* * CLEANUP * *******************************/ %! abolish_all_tables % % Remove all tables. This is normally used to free up the space or % recompute the result after predicates on which the result for some % tabled predicates depend. % % Abolishes both local and shared tables. Possibly incomplete tables % are marked for destruction upon completion. The dependency graphs % for incremental and monotonic tabling are reclaimed as well. abolish_all_tables :- ( '$tbl_abolish_local_tables' -> true ; true ), ( '$tbl_variant_table'(VariantTrie), trie_gen(VariantTrie, _, Trie), '$tbl_destroy_table'(Trie), fail ; true ). abolish_private_tables :- ( '$tbl_abolish_local_tables' -> true ; ( '$tbl_local_variant_table'(VariantTrie), trie_gen(VariantTrie, _, Trie), '$tbl_destroy_table'(Trie), fail ; true ) ). abolish_shared_tables :- ( '$tbl_global_variant_table'(VariantTrie), trie_gen(VariantTrie, _, Trie), '$tbl_destroy_table'(Trie), fail ; true ). %! abolish_table_subgoals(:Subgoal) is det. % % Abolish all tables that unify with SubGoal. % % @tbd: SubGoal must be callable. Should we allow for more general % patterns? abolish_table_subgoals(SubGoal0) :- '$tbl_implementation'(SubGoal0, M:SubGoal), !, '$must_be'(acyclic, SubGoal), ( '$tbl_variant_table'(VariantTrie), trie_gen(VariantTrie, M:SubGoal, Trie), '$tbl_destroy_table'(Trie), fail ; true ). abolish_table_subgoals(_). %! abolish_module_tables(+Module) is det. % % Abolish all tables for predicates associated with the given module. abolish_module_tables(Module) :- '$must_be'(atom, Module), '$tbl_variant_table'(VariantTrie), current_module(Module), !, forall(trie_gen(VariantTrie, Module:_, Trie), '$tbl_destroy_table'(Trie)). abolish_module_tables(_). %! abolish_nonincremental_tables is det. % % Abolish all tables that are not related to incremental predicates. abolish_nonincremental_tables :- ( '$tbl_variant_table'(VariantTrie), trie_gen(VariantTrie, _, Trie), '$tbl_table_status'(Trie, Status, Goal, _), ( Status == complete -> true ; '$permission_error'(abolish, incomplete_table, Trie) ), \+ predicate_property(Goal, incremental), '$tbl_destroy_table'(Trie), fail ; true ). %! abolish_nonincremental_tables(+Options) % % Allow for skipping incomplete tables while abolishing. % % @tbd Mark tables for destruction such that they are abolished when % completed. abolish_nonincremental_tables(Options) :- ( Options = on_incomplete(Action) -> Action == skip ; '$option'(on_incomplete(skip), Options) ), !, ( '$tbl_variant_table'(VariantTrie), trie_gen(VariantTrie, _, Trie), '$tbl_table_status'(Trie, complete, Goal, _), \+ predicate_property(Goal, incremental), '$tbl_destroy_table'(Trie), fail ; true ). abolish_nonincremental_tables(_) :- abolish_nonincremental_tables. /******************************* * EXAMINE TABLES * *******************************/ %! current_table(:Variant, -Trie) is nondet. % % True when Trie is the answer table for Variant. If Variant has an % unbound module or goal, all possible answer tries are generated, % otherwise Variant is considered a fully instantiated variant and the % predicate is semidet. current_table(Variant, Trie) :- ct_generate(Variant), !, current_table_gen(Variant, Trie). current_table(Variant, Trie) :- current_table_lookup(Variant, Trie), !. current_table_gen(M:Variant, Trie) :- '$tbl_local_variant_table'(VariantTrie), trie_gen(VariantTrie, M:NonModed, Trie), M:'$table_mode'(Variant, NonModed, _Moded). current_table_gen(M:Variant, Trie) :- '$tbl_global_variant_table'(VariantTrie), trie_gen(VariantTrie, M:NonModed, Trie), \+ '$tbl_table_status'(Trie, fresh), % shared tables are not destroyed M:'$table_mode'(Variant, NonModed, _Moded). current_table_lookup(M:Variant, Trie) :- M:'$table_mode'(Variant, NonModed, _Moded), '$tbl_local_variant_table'(VariantTrie), trie_lookup(VariantTrie, M:NonModed, Trie). current_table_lookup(M:Variant, Trie) :- M:'$table_mode'(Variant, NonModed, _Moded), '$tbl_global_variant_table'(VariantTrie), trie_lookup(VariantTrie, NonModed, Trie), \+ '$tbl_table_status'(Trie, fresh). ct_generate(M:Variant) :- ( var(Variant) -> true ; var(M) ). /******************************* * WRAPPER GENERATION * *******************************/ :- multifile system:term_expansion/2, tabled/2. :- dynamic system:term_expansion/2. wrappers(Spec, M) --> { tabling_defaults( [ (table_incremental=true) - (incremental=true), (table_shared=true) - (tshared=true), (table_subsumptive=true) - ((mode)=subsumptive), call(subgoal_size_restraint(Level)) - (subgoal_abstract=Level) ], #{}, Defaults) }, wrappers(Spec, M, Defaults). wrappers(Var, _, _) --> { var(Var), !, '$instantiation_error'(Var) }. wrappers(M:Spec, _, Opts) --> !, { '$must_be'(atom, M) }, wrappers(Spec, M, Opts). wrappers(Spec as Options, M, Opts0) --> !, { table_options(Options, Opts0, Opts) }, wrappers(Spec, M, Opts). wrappers((A,B), M, Opts) --> !, wrappers(A, M, Opts), wrappers(B, M, Opts). wrappers(Name//Arity, M, Opts) --> { atom(Name), integer(Arity), Arity >= 0, !, Arity1 is Arity+2 }, wrappers(Name/Arity1, M, Opts). wrappers(Name/Arity, Module, Opts) --> { '$option'(mode(TMode), Opts, variant), atom(Name), integer(Arity), Arity >= 0, !, functor(Head, Name, Arity), '$tbl_trienode'(Reserved) }, qualify(Module, [ '$tabled'(Head, TMode), '$table_mode'(Head, Head, Reserved) ]), [ (:- initialization('$wrap_tabled'(Module:Head, Opts), now)) ]. wrappers(ModeDirectedSpec, Module, Opts) --> { '$option'(mode(TMode), Opts, variant), callable(ModeDirectedSpec), !, functor(ModeDirectedSpec, Name, Arity), functor(Head, Name, Arity), extract_modes(ModeDirectedSpec, Head, Variant, Modes, Moded), updater_clauses(Modes, Head, UpdateClauses), mode_check(Moded, ModeTest), ( ModeTest == true -> WrapClause = '$wrap_tabled'(Module:Head, Opts), TVariant = Head ; WrapClause = '$moded_wrap_tabled'(Module:Head, Opts, ModeTest, Module:Variant, Moded), TVariant = Variant ) }, qualify(Module, [ '$tabled'(Head, TMode), '$table_mode'(Head, TVariant, Moded) ]), [ (:- initialization(WrapClause, now)) ], qualify(Module, UpdateClauses). wrappers(TableSpec, _M, _Opts) --> { '$type_error'(table_desclaration, TableSpec) }. qualify(Module, List) --> { prolog_load_context(module, Module) }, !, clist(List). qualify(Module, List) --> qlist(List, Module). clist([]) --> []. clist([H|T]) --> [H], clist(T). qlist([], _) --> []. qlist([H|T], M) --> [M:H], qlist(T, M). tabling_defaults([], Dict, Dict). tabling_defaults([Condition-(Opt=Value)|T], Dict0, Dict) :- ( tabling_default(Condition) -> Dict1 = Dict0.put(Opt,Value) ; Dict1 = Dict0 ), tabling_defaults(T, Dict1, Dict). tabling_default(Flag=FValue) :- !, current_prolog_flag(Flag, FValue). tabling_default(call(Term)) :- call(Term). % Called from wrappers//2. subgoal_size_restraint(Level) :- current_prolog_flag(max_table_subgoal_size_action, abstract), current_prolog_flag(max_table_subgoal_size, Level). %! table_options(+Options, +OptDictIn, -OptDictOut) % % Handler the ... as _options_ ... construct. table_options(Options, _Opts0, _Opts) :- var(Options), '$instantiation_error'(Options). table_options((A,B), Opts0, Opts) :- !, table_options(A, Opts0, Opts1), table_options(B, Opts1, Opts). table_options(subsumptive, Opts0, Opts1) :- !, put_dict(mode, Opts0, subsumptive, Opts1). table_options(variant, Opts0, Opts1) :- !, put_dict(mode, Opts0, variant, Opts1). table_options(incremental, Opts0, Opts1) :- !, put_dict(#{incremental:true,opaque:false}, Opts0, Opts1). table_options(monotonic, Opts0, Opts1) :- !, put_dict(monotonic, Opts0, true, Opts1). table_options(opaque, Opts0, Opts1) :- !, put_dict(#{incremental:false,opaque:true}, Opts0, Opts1). table_options(lazy, Opts0, Opts1) :- !, put_dict(lazy, Opts0, true, Opts1). table_options(dynamic, Opts0, Opts1) :- !, put_dict(dynamic, Opts0, true, Opts1). table_options(shared, Opts0, Opts1) :- !, put_dict(tshared, Opts0, true, Opts1). table_options(private, Opts0, Opts1) :- !, put_dict(tshared, Opts0, false, Opts1). table_options(max_answers(Count), Opts0, Opts1) :- !, restraint(max_answers, Count, Opts0, Opts1). table_options(subgoal_abstract(Size), Opts0, Opts1) :- !, restraint(subgoal_abstract, Size, Opts0, Opts1). table_options(answer_abstract(Size), Opts0, Opts1) :- !, restraint(answer_abstract, Size, Opts0, Opts1). table_options(Opt, _, _) :- '$domain_error'(table_option, Opt). restraint(Name, Value0, Opts0, Opts) :- '$table_option'(Value0, Value), ( Value < 0 -> Opts = Opts0 ; put_dict(Name, Opts0, Value, Opts) ). %! mode_check(+Moded, -TestCode) % % Enforce the output arguments of a mode-directed tabled predicate to % be unbound. mode_check(Moded, Check) :- var(Moded), !, Check = (var(Moded)->true;'$uninstantiation_error'(Moded)). mode_check(Moded, true) :- '$tbl_trienode'(Moded), !. mode_check(Moded, (Test->true;'$tabling':instantiated_moded_arg(Vars))) :- Moded =.. [s|Vars], var_check(Vars, Test). var_check([H|T], Test) :- ( T == [] -> Test = var(H) ; Test = (var(H),Rest), var_check(T, Rest) ). :- public instantiated_moded_arg/1. instantiated_moded_arg(Vars) :- '$member'(V, Vars), \+ var(V), '$uninstantiation_error'(V). %! extract_modes(+ModeSpec, +Head, -Variant, -Modes, -ModedAnswer) is det. % % Split Head into its variant and term that matches the moded % arguments. % % @arg ModedAnswer is a term that captures that value of all moded % arguments of an answer. If there is only one, this is the value % itself. If there are multiple, this is a term s(A1,A2,...) extract_modes(ModeSpec, Head, Variant, Modes, ModedAnswer) :- compound(ModeSpec), !, compound_name_arguments(ModeSpec, Name, ModeSpecArgs), compound_name_arguments(Head, Name, HeadArgs), separate_args(ModeSpecArgs, HeadArgs, VariantArgs, Modes, ModedArgs), length(ModedArgs, Count), atomic_list_concat([$,Name,$,Count], VName), Variant =.. [VName|VariantArgs], ( ModedArgs == [] -> '$tbl_trienode'(ModedAnswer) ; ModedArgs = [ModedAnswer] -> true ; ModedAnswer =.. [s|ModedArgs] ). extract_modes(Atom, Atom, Variant, [], ModedAnswer) :- atomic_list_concat([$,Atom,$,0], Variant), '$tbl_trienode'(ModedAnswer). %! separate_args(+ModeSpecArgs, +HeadArgs, %! -NoModesArgs, -Modes, -ModeArgs) is det. % % Split the arguments in those that need to be part of the variant % identity (NoModesArgs) and those that are aggregated (ModeArgs). % % @arg Args seems a copy of ModeArgs, why? separate_args([], [], [], [], []). separate_args([HM|TM], [H|TA], [H|TNA], Modes, TMA):- indexed_mode(HM), !, separate_args(TM, TA, TNA, Modes, TMA). separate_args([M|TM], [H|TA], TNA, [M|Modes], [H|TMA]):- separate_args(TM, TA, TNA, Modes, TMA). indexed_mode(Mode) :- % XSB var(Mode), !. indexed_mode(index). % YAP indexed_mode(+). % B %! updater_clauses(+Modes, +Head, -Clauses) % % Generates a clause to update the aggregated state. Modes is % a list of predicate names we apply to the state. updater_clauses([], _, []) :- !. updater_clauses([P], Head, [('$table_update'(Head, S0, S1, S2) :- Body)]) :- !, update_goal(P, S0,S1,S2, Body). updater_clauses(Modes, Head, [('$table_update'(Head, S0, S1, S2) :- Body)]) :- length(Modes, Len), functor(S0, s, Len), functor(S1, s, Len), functor(S2, s, Len), S0 =.. [_|Args0], S1 =.. [_|Args1], S2 =.. [_|Args2], update_body(Modes, Args0, Args1, Args2, true, Body). update_body([], _, _, _, Body, Body). update_body([P|TM], [A0|Args0], [A1|Args1], [A2|Args2], Body0, Body) :- update_goal(P, A0,A1,A2, Goal), mkconj(Body0, Goal, Body1), update_body(TM, Args0, Args1, Args2, Body1, Body). update_goal(Var, _,_,_, _) :- var(Var), !, '$instantiation_error'(Var). update_goal(lattice(M:PI), S0,S1,S2, M:Goal) :- !, '$must_be'(atom, M), update_goal(lattice(PI), S0,S1,S2, Goal). update_goal(lattice(Name/Arity), S0,S1,S2, Goal) :- !, '$must_be'(oneof(integer, lattice_arity, [3]), Arity), '$must_be'(atom, Name), Goal =.. [Name,S0,S1,S2]. update_goal(lattice(Head), S0,S1,S2, Goal) :- compound(Head), !, compound_name_arity(Head, Name, Arity), '$must_be'(oneof(integer, lattice_arity, [3]), Arity), Goal =.. [Name,S0,S1,S2]. update_goal(lattice(Name), S0,S1,S2, Goal) :- !, '$must_be'(atom, Name), update_goal(lattice(Name/3), S0,S1,S2, Goal). update_goal(po(Name/Arity), S0,S1,S2, Goal) :- !, '$must_be'(oneof(integer, po_arity, [2]), Arity), '$must_be'(atom, Name), Call =.. [Name, S0, S1], Goal = (Call -> S2 = S0 ; S2 = S1). update_goal(po(M:Name/Arity), S0,S1,S2, Goal) :- !, '$must_be'(atom, M), '$must_be'(oneof(integer, po_arity, [2]), Arity), '$must_be'(atom, Name), Call =.. [Name, S0, S1], Goal = (M:Call -> S2 = S0 ; S2 = S1). update_goal(po(M:Name), S0,S1,S2, Goal) :- !, '$must_be'(atom, M), '$must_be'(atom, Name), update_goal(po(M:Name/2), S0,S1,S2, Goal). update_goal(po(Name), S0,S1,S2, Goal) :- !, '$must_be'(atom, Name), update_goal(po(Name/2), S0,S1,S2, Goal). update_goal(Alias, S0,S1,S2, Goal) :- update_alias(Alias, Update), !, update_goal(Update, S0,S1,S2, Goal). update_goal(Mode, _,_,_, _) :- '$domain_error'(tabled_mode, Mode). update_alias(first, lattice('$tabling':first/3)). update_alias(-, lattice('$tabling':first/3)). update_alias(last, lattice('$tabling':last/3)). update_alias(min, lattice('$tabling':min/3)). update_alias(max, lattice('$tabling':max/3)). update_alias(sum, lattice('$tabling':sum/3)). mkconj(true, G, G) :- !. mkconj(G1, G2, (G1,G2)). /******************************* * AGGREGATION * *******************************/ %! first(+S0, +S1, -S) is det. %! last(+S0, +S1, -S) is det. %! min(+S0, +S1, -S) is det. %! max(+S0, +S1, -S) is det. %! sum(+S0, +S1, -S) is det. % % Implement YAP tabling modes. :- public first/3, last/3, min/3, max/3, sum/3. first(S, _, S). last(_, S, S). min(S0, S1, S) :- (S0 @< S1 -> S = S0 ; S = S1). max(S0, S1, S) :- (S0 @> S1 -> S = S0 ; S = S1). sum(S0, S1, S) :- S is S0+S1. /******************************* * DYNAMIC PREDICATES * *******************************/ %! '$set_table_wrappers'(:Head) % % Clear/add wrappers and notifications to trap dynamic predicates. % This is required both for incremental and monotonic tabling. '$set_table_wrappers'(Pred) :- ( '$get_predicate_attribute'(Pred, incremental, 1), \+ '$get_predicate_attribute'(Pred, opaque, 1) -> wrap_incremental(Pred) ; unwrap_incremental(Pred) ), ( '$get_predicate_attribute'(Pred, monotonic, 1) -> wrap_monotonic(Pred) ; unwrap_monotonic(Pred) ). /******************************* * MONOTONIC TABLING * *******************************/ %! mon_assert_dep(+Dependency, +Continuation, +Skel, +ATrie) is det. % % Create a dependency for monotonic tabling. Skel and ATrie are the % target trie for solutions of Continuation. mon_assert_dep(dependency(Dynamic), Cont, Skel, ATrie) :- '$idg_add_mono_dyn_dep'(Dynamic, dependency(Dynamic, Cont, Skel), ATrie). mon_assert_dep(dependency(SrcSkel, SrcTrie, IsMono), Cont, Skel, ATrie) :- '$idg_add_monotonic_dep'(SrcTrie, dependency(SrcSkel, IsMono, Cont, Skel), ATrie). %! monotonic_affects(+SrcTrie, +SrcReturn, -IsMono, %! -Continuation, -Return, -Atrie) % % Dependency between two monotonic tables. If SrcReturn is added to % SrcTrie we must add all answers for Return of Continuation to Atrie. % IsMono shares with Continuation and is used in start_tabling/3 to % distinguish normal tabled call from propagation. monotonic_affects(SrcTrie, SrcSkel, IsMono, Cont, Skel, ATrie) :- '$idg_mono_affects_eager'(SrcTrie, ATrie, dependency(SrcSkel, IsMono, Cont, Skel)). %! monotonic_dyn_affects(:Head, -Continuation, -Return, -ATrie) % % Dynamic predicate that maintains the dependency from a monotonic monotonic_dyn_affects(Head, Cont, Skel, ATrie) :- dyn_affected(Head, DTrie), '$idg_mono_affects_eager'(DTrie, ATrie, dependency(Head, Cont, Skel)). %! wrap_monotonic(:Head) % % Prepare the dynamic predicate Head for monotonic tabling. This traps % calls to build the dependency graph and updates to propagate answers % from new clauses through the dependency graph. wrap_monotonic(Head) :- '$wrap_predicate'(Head, monotonic, _Closure, Wrapped, '$start_monotonic'(Head, Wrapped)), '$pi_head'(PI, Head), prolog_listen(PI, monotonic_update). %! unwrap_monotonic(+Head) % % Remove the monotonic wrappers and dependencies. unwrap_monotonic(Head) :- '$pi_head'(PI, Head), ( unwrap_predicate(PI, monotonic) -> prolog_unlisten(PI, monotonic_update) ; true ). %! '$start_monotonic'(+Head, +Wrapped) % % This is called the monotonic wrapper around a dynamic predicate to % collect the dependencies between the dynamic predicate and the % monotonic tabled predicates. '$start_monotonic'(Head, Wrapped) :- ( '$tbl_collect_mono_dep' -> shift(dependency(Head)), tdebug(monotonic, 'Cont in $start_dynamic/2 with ~p', [Head]), Wrapped, tdebug(monotonic, ' --> ~p', [Head]) ; Wrapped ). %! monotonic_update(+Action, +ClauseRef) % % Trap changes to the monotonic dynamic predicate and forward them. :- public monotonic_update/2. monotonic_update(Action, ClauseRef) :- ( atomic(ClauseRef) % avoid retractall, start(_) -> '$clause'(Head, _Body, ClauseRef, _Bindings), mon_propagate(Action, Head, ClauseRef) ; true ). %! mon_propagate(+Action, +Head, +ClauseRef) % % Handle changes to a dynamic predicate as part of monotonic % updates. mon_propagate(Action, Head, ClauseRef) :- assert_action(Action), !, setup_call_cleanup( '$tbl_propagate_start'(Old), propagate_assert(Head), '$tbl_propagate_end'(Old)), forall(dyn_affected(Head, ATrie), '$mono_idg_changed'(ATrie, ClauseRef)). mon_propagate(retract, Head, _) :- !, mon_invalidate_dependents(Head). mon_propagate(rollback(Action), Head, _) :- mon_propagate_rollback(Action, Head). mon_propagate_rollback(Action, _Head) :- assert_action(Action), !. mon_propagate_rollback(retract, Head) :- mon_invalidate_dependents(Head). assert_action(asserta). assert_action(assertz). %! propagate_assert(+Head) is det. % % Propagate assertion of a dynamic clause with head Head. propagate_assert(Head) :- tdebug(monotonic, 'Asserted ~p', [Head]), ( monotonic_dyn_affects(Head, Cont, Skel, ATrie), tdebug(monotonic, 'Propagating dyn ~p to ~p', [Head, ATrie]), '$idg_set_current'(_, ATrie), pdelim(Cont, Skel, ATrie), fail ; true ). %! propagate_answer(+SrcTrie, +SrcSkel) is det. % % Propagate the new answer SrcSkel to the answer table SrcTrie. propagate_answer(SrcTrie, SrcSkel) :- ( monotonic_affects(SrcTrie, SrcSkel, true, Cont, Skel, ATrie), tdebug(monotonic, 'Propagating tab ~p to ~p', [SrcTrie, ATrie]), pdelim(Cont, Skel, ATrie), fail ; true ). %! pdelim(+Worker, +Skel, +ATrie) % % Call Worker (a continuation) and add each binding it provides for % Skel to ATrie. If a new answer is added to ATrie, using % propagate_answer/2 to propagate this further. Note that we may hit % new dependencies and thus we need to run this using reset/3. % % @tbd Not sure whether we need full tabling here. Need to think of % test cases. pdelim(Worker, Skel, ATrie) :- reset(Worker, Dep, Cont), ( Cont == 0 -> '$tbl_monotonic_add_answer'(ATrie, Skel), propagate_answer(ATrie, Skel) ; mon_assert_dep(Dep, Cont, Skel, ATrie), pdelim(Cont, Skel, ATrie) ). %! mon_invalidate_dependents(+Head) % % A non-monotonic operation was done on Head. Invalidate all dependent % tables, preparing for normal incremental reevaluation on the next % cycle. mon_invalidate_dependents(Head) :- tdebug(monotonic, 'Invalidate dependents for ~p', [Head]), forall(dyn_affected(Head, ATrie), '$idg_mono_invalidate'(ATrie)). %! abolish_monotonic_tables % % Abolish all monotonic tables and the monotonic dependency relations. % % @tbd: just prepare for incremental reevaluation? abolish_monotonic_tables :- ( '$tbl_variant_table'(VariantTrie), trie_gen(VariantTrie, Goal, ATrie), '$get_predicate_attribute'(Goal, monotonic, 1), '$tbl_destroy_table'(ATrie), fail ; true ). /******************************* * INCREMENTAL TABLING * *******************************/ %! wrap_incremental(:Head) is det. % % Wrap an incremental dynamic predicate to be added to the IDG. wrap_incremental(Head) :- tdebug(monotonic, 'Wrapping ~p', [Head]), abstract_goal(Head, Abstract), '$pi_head'(PI, Head), ( Head == Abstract -> prolog_listen(PI, dyn_update) ; prolog_listen(PI, dyn_update(Abstract)) ). abstract_goal(M:Head, M:Abstract) :- compound(Head), '$get_predicate_attribute'(M:Head, abstract, 1), !, compound_name_arity(Head, Name, Arity), functor(Abstract, Name, Arity). abstract_goal(Head, Head). %! dyn_update(+Action, +Context) is det. % % Track changes to added or removed clauses. We use '$clause'/4 % because it works on erased clauses. % % @tbd Add a '$clause_head'(-Head, +ClauseRef) to only decompile the % head. :- public dyn_update/2, dyn_update/3. dyn_update(_Action, ClauseRef) :- ( atomic(ClauseRef) % avoid retractall, start(_) -> '$clause'(Head, _Body, ClauseRef, _Bindings), dyn_changed_pattern(Head) ; true ). dyn_update(Abstract, _, _) :- dyn_changed_pattern(Abstract). dyn_changed_pattern(Term) :- forall(dyn_affected(Term, ATrie), '$idg_changed'(ATrie)). dyn_affected(Term, ATrie) :- '$tbl_variant_table'(VTable), trie_gen(VTable, Term, ATrie). %! unwrap_incremental(:Head) is det. % % Remove dynamic predicate incremenal forwarding, reset the possible % `abstract` property and remove possible tables. unwrap_incremental(Head) :- '$pi_head'(PI, Head), abstract_goal(Head, Abstract), ( Head == Abstract -> prolog_unlisten(PI, dyn_update) ; '$set_predicate_attribute'(Head, abstract, 0), prolog_unlisten(PI, dyn_update(_)) ), ( '$tbl_variant_table'(VariantTrie) -> forall(trie_gen(VariantTrie, Head, ATrie), '$tbl_destroy_table'(ATrie)) ; true ). %! reeval(+ATrie, :Goal, ?Return) is nondet. % % Called if the table ATrie is out-of-date (has non-zero % _falsecount_). The answers of this predicate are the answers to Goal % after re-evaluating the answer trie. % % This finds all dependency paths to dynamic predicates and then % evaluates the nodes in a breath-first fashion starting at the level % just above the dynamic predicates and moving upwards. Bottom up % evaluation is used to profit from upward propagation of not-modified % events that may cause the evaluation to stop early. % % Note that false paths either end in a dynamic node or a complete % node. The latter happens if we have and IDG "D -> P -> Q" and we % first re-evaluate P for some reason. Now Q can still be invalid % after P has been re-evaluated. % % @arg ATrie is the answer trie. When shared tabling, we own this % trie. % @arg Goal is tabled goal (variant). If we run into a deadlock we % need to call this. % @arg Return is the return skeleton. We must run % trie_gen_compiled(ATrie, Return) to enumerate the answers reeval(ATrie, Goal, Return) :- catch(try_reeval(ATrie, Goal, Return), deadlock, retry_reeval(ATrie, Goal)). retry_reeval(ATrie, Goal) :- '$tbl_reeval_abandon'(ATrie), tdebug(deadlock, 'Deadlock re-evaluating ~p; retrying', [ATrie]), sleep(0.000001), call(Goal). try_reeval(ATrie, Goal, Return) :- nb_current('$tbl_reeval', true), !, tdebug(reeval, 'Nested re-evaluation for ~p', [ATrie]), do_reeval(ATrie, Goal, Return). try_reeval(ATrie, Goal, Return) :- tdebug(reeval, 'Planning reeval for ~p', [ATrie]), findall(Path, false_path(ATrie, Path), Paths0), sort(0, @>, Paths0, Paths), split_paths(Paths, Dynamic, Complete), tdebug(forall('$member'(Path, Dynamic), tdebug(reeval, ' Re-eval dynamic path: ~p', [Path]))), tdebug(forall('$member'(Path, Complete), tdebug(reeval, ' Re-eval complete path: ~p', [Path]))), reeval_paths(Dynamic, ATrie), reeval_paths(Complete, ATrie), do_reeval(ATrie, Goal, Return). do_reeval(ATrie, Goal, Return) :- '$tbl_reeval_prepare_top'(ATrie, Clause), ( Clause == 0 % complete and answer subsumption -> '$tbl_table_status'(ATrie, _Status, M:Variant, Return), M:'$table_mode'(Goal0, Variant, ModeArgs), Goal = M:Goal0, moded_gen_answer(ATrie, Return, ModeArgs) ; nonvar(Clause) % complete -> trie_gen_compiled(Clause, Return) ; call(Goal) % actually re-evaluate ). split_paths([], [], []). split_paths([[_|Path]|T], DT, [Path|CT]) :- split_paths(T, DT, CT). reeval_paths([], _) :- !. reeval_paths(BottomUp, ATrie) :- is_invalid(ATrie), !, reeval_heads(BottomUp, ATrie, BottomUp1), reeval_paths(BottomUp1, ATrie). reeval_paths(_, _). reeval_heads(_, ATrie, _) :- \+ is_invalid(ATrie), !. reeval_heads([], _, []). reeval_heads([[H]|B], ATrie, BT) :- !, reeval_node(H), reeval_heads(B, ATrie, BT). reeval_heads([[]|B], ATrie, BT) :- !, reeval_heads(B, ATrie, BT). reeval_heads([[H|T]|B], ATrie, [T|BT]) :- !, reeval_node(H), reeval_heads(B, ATrie, BT). %! false_path(+Atrie, -Path) is nondet. % % True when Path is a list of invalid tries (bottom up, ending with % ATrie). The last element of the list is a term % `s(Rank,Length,ATrie)` that is used for sorting the paths. % % If we find a table along the way that is being worked on by some % other thread we wait for it. false_path(ATrie, BottomUp) :- false_path(ATrie, Path, []), '$reverse'(Path, BottomUp). false_path(ATrie, [ATrie|T], Seen) :- \+ memberchk(ATrie, Seen), '$idg_false_edge'(ATrie, Dep, Status), tdebug(reeval, ' ~p has dependent ~p (~w)', [ATrie, Dep, Status]), ( Status == invalid -> false_path(Dep, T, [ATrie|Seen]) ; status_rank(Status, Rank), length(Seen, Len), T = [s(Rank,Len,Dep)] ). status_rank(dynamic, 2) :- !. status_rank(monotonic, 2) :- !. status_rank(complete, 1) :- !. status_rank(Status, Rank) :- var(Rank), !, format(user_error, 'Re-eval from status ~p~n', [Status]), Rank = 0. status_rank(Rank, Rank) :- format(user_error, 'Re-eval from rank ~p~n', [Rank]). is_invalid(ATrie) :- '$idg_falsecount'(ATrie, FalseCount), FalseCount > 0. %! reeval_node(+ATrie) % % Re-evaluate the invalid answer trie ATrie. Initially this created a % nested tabling environment, but this is dropped: % % - It is possible for the re-evaluating variant to call into outer % non/not-yet incremental tables, requiring a merge with this % outer SCC. This doesn't work well with a sub-environment. % - We do not need one. If this environment is not merged into the % outer one it will complete before we continue. reeval_node(ATrie) :- '$tbl_reeval_prepare'(ATrie, M:Variant), !, M:'$table_mode'(Goal0, Variant, _Moded), Goal = M:Goal0, tdebug(reeval, 'Re-evaluating ~p', [Goal]), ( '$idg_reset_current', setup_call_cleanup( nb_setval('$tbl_reeval', true), ignore(Goal), % assumes local scheduling nb_delete('$tbl_reeval')), fail ; tdebug(reeval, 'Re-evaluated ~p', [Goal]) ). reeval_node(ATrie) :- '$mono_reeval_prepare'(ATrie, Size), !, tdebug(reeval, 'Re-evaluating lazy monotonic ~p', [ATrie]), ( '$idg_mono_affects_lazy'(ATrie, SrcTrie, Dep, Answers), ( Dep = dependency(Head, Cont, Skel) -> ( '$member'(ClauseRef, Answers), '$clause'(Head, _Body, ClauseRef, _Bindings), tdebug(monotonic, 'Propagating ~p from ~p to ~p', [Head, SrcTrie, ATrie]), pdelim(Cont, Skel, ATrie), fail ; '$idg_mono_empty_queue'(SrcTrie, ATrie) ) ; Dep = dependency(SrcSkel, true, Cont, Skel) -> ( '$member'(Node, Answers), '$tbl_node_answer'(Node, SrcSkel), tdebug(monotonic, 'Propagating ~p from ~p to ~p', [Skel, SrcTrie, ATrie]), pdelim(Cont, Skel, ATrie), fail ; '$idg_mono_empty_queue'(SrcTrie, ATrie) ) ), fail ; '$mono_reeval_done'(ATrie, Size) ). reeval_node(_). /******************************* * EXPAND DIRECTIVES * *******************************/ system:term_expansion((:- table(Preds)), Expansion) :- \+ current_prolog_flag(xref, true), prolog_load_context(module, M), phrase(wrappers(Preds, M), Clauses), multifile_decls(Clauses, Directives0), sort(Directives0, Directives), '$append'(Directives, Clauses, Expansion). multifile_decls([], []). multifile_decls([H0|T0], [H|T]) :- multifile_decl(H0, H), !, multifile_decls(T0, T). multifile_decls([_|T0], T) :- multifile_decls(T0, T). multifile_decl(M:(Head :- _Body), (:- multifile(M:Name/Arity))) :- !, functor(Head, Name, Arity). multifile_decl(M:Head, (:- multifile(M:Name/Arity))) :- !, functor(Head, Name, Arity). multifile_decl((Head :- _Body), (:- multifile(Name/Arity))) :- !, functor(Head, Name, Arity). multifile_decl(Head, (:- multifile(Name/Arity))) :- !, Head \= (:-_), functor(Head, Name, Arity). /******************************* * ANSWER COMPLETION * *******************************/ :- public answer_completion/2. %! answer_completion(+AnswerTrie, +Return) is det. % % Find positive loops in the residual program and remove the % corresponding answers, possibly causing additional simplification. % This is called from C if simplify_component() detects there are % conditional answers after simplification. % % Note that we are called recursively from C. Our caller prepared a % clean new tabling environment and restores the old one after this % predicate terminates. % % @author This code is by David Warren as part of XSB. % @see called from C, pl-tabling.c, answer_completion() answer_completion(AnswerTrie, Return) :- tdebug(trie_goal(AnswerTrie, Goal, _Return)), tdebug(ac(start), 'START: Answer completion for ~p', [Goal]), call_cleanup(answer_completion_guarded(AnswerTrie, Return, Propagated), abolish_table_subgoals(eval_subgoal_in_residual(_,_))), ( Propagated > 0 -> answer_completion(AnswerTrie, Return) ; true ). answer_completion_guarded(AnswerTrie, Return, Propagated) :- ( eval_subgoal_in_residual(AnswerTrie, Return), fail ; true ), delete_answers_for_failing_calls(Propagated), ( Propagated == 0 -> mark_succeeding_calls_as_answer_completed ; true ). %! delete_answers_for_failing_calls(-Propagated) % % Delete answers whose condition is determined to be `false` and % return the number of additional answers that changed status as a % consequence of additional simplification propagation. delete_answers_for_failing_calls(Propagated) :- State = state(0), ( subgoal_residual_trie(ASGF, ESGF), \+ trie_gen(ESGF, _ETmp), tdebug(trie_goal(ASGF, Goal0, _)), tdebug(trie_goal(ASGF, Goal, _0Return)), '$trie_gen_node'(ASGF, _0Return, ALeaf), tdebug(ac(prune), ' Removing answer ~p from ~p', [Goal, Goal0]), '$tbl_force_truth_value'(ALeaf, false, Count), arg(1, State, Prop0), Prop is Prop0+Count-1, nb_setarg(1, State, Prop), fail ; arg(1, State, Propagated) ). mark_succeeding_calls_as_answer_completed :- ( subgoal_residual_trie(ASGF, _ESGF), ( '$tbl_answer_dl'(ASGF, _0Return, _True) -> tdebug(trie_goal(ASGF, Answer, _0Return)), tdebug(trie_goal(ASGF, Goal, _0Return)), tdebug(ac(prune), ' Completed ~p on ~p', [Goal, Answer]), '$tbl_set_answer_completed'(ASGF) ), fail ; true ). subgoal_residual_trie(ASGF, ESGF) :- '$tbl_variant_table'(VariantTrie), context_module(M), trie_gen(VariantTrie, M:eval_subgoal_in_residual(ASGF, _), ESGF). %! eval_dl_in_residual(+Condition) % % Evaluate a condition by only looking at the residual goals of the % involved calls. eval_dl_in_residual(true) :- !. eval_dl_in_residual((A;B)) :- !, ( eval_dl_in_residual(A) ; eval_dl_in_residual(B) ). eval_dl_in_residual((A,B)) :- !, eval_dl_in_residual(A), eval_dl_in_residual(B). eval_dl_in_residual(tnot(G)) :- !, tdebug(ac, ' ? tnot(~p)', [G]), current_table(G, SGF), '$tbl_table_status'(SGF, _Status, _Wrapper, Return), tnot(eval_subgoal_in_residual(SGF, Return)). eval_dl_in_residual(G) :- tdebug(ac, ' ? ~p', [G]), ( current_table(G, SGF) -> true ; more_general_table(G, SGF) -> true ; writeln(user_error, 'MISSING CALL? '(G)), fail ), '$tbl_table_status'(SGF, _Status, _Wrapper, Return), eval_subgoal_in_residual(SGF, Return). more_general_table(G, Trie) :- term_variables(G, Vars), '$tbl_variant_table'(VariantTrie), trie_gen(VariantTrie, G, Trie), is_most_general_term(Vars). :- table eval_subgoal_in_residual/2. %! eval_subgoal_in_residual(+AnswerTrie, ?Return) % % Derive answers for the variant represented by AnswerTrie based on % the residual goals only. eval_subgoal_in_residual(AnswerTrie, _Return) :- '$tbl_is_answer_completed'(AnswerTrie), !, undefined. eval_subgoal_in_residual(AnswerTrie, Return) :- '$tbl_answer'(AnswerTrie, Return, Condition), tdebug(trie_goal(AnswerTrie, Goal, Return)), tdebug(ac, 'Condition for ~p is ~p', [Goal, Condition]), eval_dl_in_residual(Condition). /******************************* * TRIPWIRES * *******************************/ %! tripwire(+Wire, +Action, +Context) % % Called from the tabling engine of some tripwire is exceeded and the % situation is not handled internally (such as `abstract` and % `bounded_rationality`. :- public tripwire/3. :- multifile prolog:tripwire/2. tripwire(Wire, _Action, Context) :- prolog:tripwire(Wire, Context), !. tripwire(Wire, Action, Context) :- Error = error(resource_error(tripwire(Wire, Context)), _), tripwire_action(Action, Error). tripwire_action(warning, Error) :- print_message(warning, Error). tripwire_action(error, Error) :- throw(Error). tripwire_action(suspend, Error) :- print_message(warning, Error), break. /******************************* * SYSTEM TABLED PREDICATES * *******************************/ :- table system:undefined/0, system:answer_count_restraint/0, system:radial_restraint/0, system:tabled_call/1. %! undefined is undefined. % % Expresses the value _bottom_ from the well founded semantics. system:(undefined :- tnot(undefined)). %! answer_count_restraint is undefined. %! radial_restraint is undefined. % % Similar to undefined/0, providing a specific _undefined_ for % restraint violations. system:(answer_count_restraint :- tnot(answer_count_restraint)). system:(radial_restraint :- tnot(radial_restraint)). system:(tabled_call(X) :- call(X)).